M1.		(a)	387;	1	
	(b)	(i)	CCAG;	1	
		(ii)	5;	1	
	(c)	high nan mus (two leng	n energy radiation / X rays / ultraviolet light / gamma rays; n energy particles / alpha particles / beta particles; ned chemical mutagens e.g. benzene / caffeine / pesticide / stard gas / tobacco tar / free radicals; n named examples of any of the above = 2 marks) otherwise the contraction of the exposure (to a mutagen); age (of mutagen);	2 max	
	(d)	(i)	UAC UUA UGG;	1	
		(ii)	addition and deletion (of bases/nucleotides); thymine added; adenine deleted; (addition of thymine and deletion of adenine = 3 marks) (allow addition of adenine (RNA) and deletion of uracil (RNA) = 2 marks)	3	[9]
M2.		(a)	(i) join/attach nucleotides, to form a strand/along backbone/ phosphodiester bonds; (reject reference to H bonds, complementary base pairing)		
		(ii)	ribosome/RER;	1	
	(b)	(i)	CGTTACCAA;	1	
		(ii)	CGU UAC CAA;	1	
	(c)	<u>sub</u>	stitution;	1	

	(d)	(i)	alanine;	1	
		(ii)	(mutation 1) no change(to sequence of amino acids); codon for alanine/degenerate codon/same amino acid coded for;	2	
			(mutation 2) (change in sequence) <u>valine</u> replaced by <u>alanine/</u> codon for <u>alanine;</u> folding/shape/tertiary structure/position of bonds may change; (reject peptide bonds)	2	[10]
М3.		(a)	(i) UGC;	1	
		(ii)	TGCTAC;	1	
	(b)		IA) contains introns / non-coding bases / mRNA only contains exons / ing bases; Assume that 'it' refers to DNA Neutral: DNA contains introns and exons Neutral: 'splicing' Neutral: pre-mRNA contains introns Ignore refs. to start and stop codons	1	
	(c)	Diff	erent primary structure / amino acid sequence / amino acid coded for; Reject: different amino acids produced / formed Neutral: refs. to bonds	1	
	(d)	1.	Acetylcholine not broken down / stays bound to receptor;		
		2.	Na ⁺ ions (continue to) enter / (continued) depolarisation / Na ⁺ channels (kept) open / action potentials / impulses fired (continuously);		
		3.	(Intercostal) muscles stay contracted / cannot relax; 3. 'Muscles contract' is not enough Accept: diaphragm stays contracted / cannot relax	3	[7]

M4. GCAAUG;; (a) Allow one mark if T instead of U, i.e. GCAATG 2 (b) (i) DNA is edited/introns present in DNA; Allow reference to 'junk' or non-coding DNA 1 220; allow 218 or 219-allow 2 (ii) Three bases/nucleotides code for one amino acid; Correct explanation for 218 or 219; 2 mRNA has no base-pairing, tRNA has base-pairing/ mRNA linear, tRNA cloverleaf shape; mRNA has no binding site for amino acids, tRNA has; mRNA different for each gene/many kinds, only few/20/64 kinds of tRNA; accept mRNA longer/larger/more nucleotides than tRNA max 2 [7] M5. ACG; (a) (i) 1 (ii) serine; 1 idea that DNA contains introns/ mRNA is only exons/ mRNA is "edited"; (allow junk/ non-sense DNA) 1 translation cannot occur; binds to/blocks codon/ triplet on mRNA; anticodon/tRNA will not fit in/base-pair; amino acids not delivered/joined; 2 max [5] M6. chloroplast, so cell photosynthesises; moves to optimum/best light intensity for photosynthesis; avoids damage due to bright light;

2 max

(b) (i) 2700

1

(ii)
$$\frac{242 \times 7500 \times 900}{60}$$
 = 27 225 000 / 27 × 10⁶ = 2 marks

(allow 1 mark for principle: amino acids x proteins time

	(c)	(i)	rate slightly slower / not affected in first 20/30 minutes / lower peak than control; then decreases/ much lower (than control); (allow 1 mark for increase in first 20/30 minutes, then decreased, if not compared with control/normal) (disqualify flagellum grows longer)	2	
		(ii)	 actinomycin has no effect (on growth of flagella); even though mRNA production / transcription prevented; (accept references to 'expt 1') (re)growth little affected by puromycin at first; protein synthesis inhibited, so likely to be using proteins present; 	4	[11]
М7.		(a)	(i) $C \rightarrow B \rightarrow E \rightarrow F \rightarrow A \rightarrow D$ Mark links: 5 correct = 2, 4 correct = 1, <4 correct = 0	2	
		(iii)	nucleus;	1	
		(iii)	A, D, F; (ignore E if evident)	1	
	(b)	(i)	Isoleucine;	1	
		(ii)	TGG;	1	[6]
M8.		(a)	(i) ACG;	1	
		(ii)	Serine;	1	

(b) DNA contains introns / (pre) mRNA is edited;

1

(c) (Tetracycline) binds to/blocks mRNA triplet;
 Anticodon/tRNA triplet cannot pair with mRNA triplet;
 Amino acid not added to polypeptide chain;
 Translation prevented;

2 max

[5]

M9. (a) (i) Phosphate and ribose;

Accept in either order. Both correct for one mark.

For phosphate accept $PO_{_4}/Pi/{\stackrel{p}{\mathbb{P}}}$ but not P.

Do not accept phosphorus.

Ignore references to pentose / sugar.

(ii) TAGGCA;

1

1

 (b) (i) Does not contain hydrogen bonds/base pairs /contains codons / does not contain anticodon / straight/not folded / no amino acid binding site/longer;

Assume that "it" refers to mRNA. Do not accept double stranded.

1

(ii) (pre-mRNA) contains introns / mRNA contains only exons;
Assume that "it" refers to pre-mRNA.
Accept non-coding as equivalent to intron.

1

(c) (i)

Part of chromosome	U
Middle	18
End	21

One mark for both figures correct

		(ii)	1. Diff	erent gene	es;							
			2. Ha	ve differer	nt (base) s	sequence	s / combir	nations of	(bases);			
				-	question i	is not abo	ut the pos		for differer ases on ge	-	2 max	[7]
M10.	-	(a)	AGC;	TTC;							2	
	(b)	spe carr	cific am ied/tran	compleme ino acid; sferred (to uence of a	ribosom	e);			NA;		3 max	
	(c)		(Met)	Phe	Gln	Gln	Lys	Gln	Phe		2	
				(three/fou	ır/five cor	rect 1 ma	rk; six coi	rect 2 ma	rks)		2	[7]
M11.	•	(a)	differe	ent form of	a gene;						1	
	(b)	sen nuc con	ni-conse leotides	onds brokervative regine up; atary / speerase;	plication /				ates);			
	(c)				a shift / al	tare haca	seguence	e (from no	int of muta	ation):	4 max	
	(c)	cha sub	nges m stitution	any amino alters one	acids / s codon /	equence triplet;	of amino	acids (fror	n this poin	t);		
		one	amino :	acıd altere	ed / code (aegenerat	e / same	amino aci	d coded fo	or;	3 max	[8]

M12.	(a) 1. Hydrolysis breaks proteins / hydrolyses proteins / produces amino acids (from proteins);							
	2. P	rotein synthesis involves condensation;						
		lydrolysis of polysaccharides/lipids linked to energy source for synthesising proteins);						
		Do not award any credit if hydrolysis and condensation confused. 3. Accept hydrolysis of other molecules if related to protein						
		synthesis.	2 max					
(b)		no acids (from calliphorin) can be joined in different sequences/ rranged;						
			1					
(c)	1. F	all, rise and fall;						
	2. R	ise after 40 and fall after 80; Ignore concentration values.	2					
(d)	(i)	Fall / increase then fall;						
(u)	(1)	Lysosomes associated with tissue breakdown;	2					
	(ii)	1. Tissues/cells are being broken down;						
		2. RNA is digested/hydrolysed/broken down;						
		3. By enzymes from lysosomes;						
		4. New proteins not made / no new RNA made;	2 max					
(e)	1. (I	RNA) associated with making protein;						
	2. N	lew / adult tissues are forming;	2					
(f)		n the first 6 days no/little oxygen supplied / with breakdown of acheae, no/little oxygen supplied;						
	2. (\	Nithout tracheae) respire anaerobically;						
		naerobic respiration involves reactions catalysed by enzyme B / onversion of pyruvate to lactate/involves lactate production;						
	4. E	nzyme A /Krebs cycle is part of aerobic respiration; Or, with emphasis on aerobic respiration: 1. Tracheae supply oxygen / after 6 days oxygen supplied;						
		2. (With tracheae) tissues can respire aerobically.	4	[15]				
				[.0]				

M13.		(a)	(i)	ATA;	4	
					1	
		(ii)	AUA;		1	
	(b)	tRN/ tRN/ tRN/	A stand A has a A has a	er leaf' shape; (allow reference to loop / folded structure) dard length; an amino acid binding site; anticodon available / three exposed bases; hydrogen bonds (between base pairs);	2 max	[4]
M14.				ein made of (chain of) amino acids; o acid has its own base code/code; es;	max 2	
	(b)		A = 2 m A – 1 m		2	
	(c)	GGG	3; GGG	;	2	
	(d)	(i)		nges base sequence; ter triplets/amino acid codes;	2	
		(ii)	S-ph	ase/interphase;	1	
	(e)	2. To 3. tR 4. Sp 5. Ap 6. Po 7. tR	o ribos RNA m pecific nticodo eptide RNA de	eaves (nucleus) through nuclear pore; ome; olecules bring amino acids (to ribosome); tRNA molecule for specific amino acid; on of tRNA corresponds / complementary to codon on mRNA; bonds form between amino acids; etaches and collects another amino acid; ne moves along mRNA;	max 6	[15]
M15.			protein	tion changes the amino acid sequence/primary structure of Factor ne tertiary structure/3D shape;	2	

(b) (mutant) Factor VIII protein is non-functional/does not work with Factor IX; so no conversion of Factor X to active form and pathway blocked; 2 boy's blood contains (active) Factor VIII; Factor VIII haemophiliac's blood contains (active) Factor IX; the mixture has both Factors and so the pathway can complete/blood clots; 2 max [6] M16. mRNA attaches to ribosome; codon on mRNA: binds to an anti-codon on tRNA; each tRNA brings a specific amino acid; sequence of codons/bases on mRNA determines order of amino acids; formation of peptide bonds/amino acids joined by condensation reactions; 4 max inserted gene/mRNA complementary to normal gene/mRNA; binds to it to prevent protein synthesis/form double strand/prevents mRNA binding to ribosomes; will not stop all translation, some mRNA reaches ribosomes/ because not all mRNA is bound by inserted gene mRNA; 2 max [6] M17. (a) RNA polymerase; DNA polymerase is incorrect Ignore references to RNA dependent or DNA dependent Allow phonetic spelling 1 (b) (i) (Receptor/transcription factor) binds to promoter; Stimulates RNA polymerase/enzyme X; Transcribes gene/increase transcription; 2 max (ii) Other cells do not have the/oestrogen/ERa receptors;

But do not accept receptors in general.

(c) Similar shape to oestrogen;

Binds receptor/prevents oestrogen binding;

Receptor not activated/will not attach to promoter/no transcription;

Accept alternative Complementary to oestrogen; Binds to oestrogen; Will not fit receptor;

2 max

[6]

M18. high energy radiation /ionising particles; named particles/ α , β , γ ; colchicine;

x rays/cosmic rays;

uv (light);

carcinogen / named carcinogen;

mustard gas / phenols / tar (qualified);

1 max

(b) (i) removal of one or more bases/nucleotide; frameshift/(from point of mutation) base sequence change;

2

sequence of bases in mRNA would change; (ii) (sequence of) amino acids different / different primary structure;

(active site / enzyme 1) changed tertiary shape / changed active sites:

white pigment does not bind;

lilac pigment not produced / white pigment remains unchanged/ enzyme 1 does not function;

4 max

blue and lilac; white; (iii)

colour of petal
(white)
blue
lilac;
white;

[9]

M19. (a)

DNA	✓	2
mRNA	×	1
tRNA	✓	1

One mark for each correct column Regard blank as incorrect in the context of this question Accept numbers written out: two, one, one

(b) (i) Marking principles

1 mark for complete piece transcribed;

Correct answer UGU CAU GAA UGC UAG

1 mark for complementary bases from sequence transcribed; but allow 1 mark for complementary bases from section transcribed, providing all four bases are involved

(ii) Marking principle

1 mark for bases corresponding to exons taken from (b)(i)

Correct answer UGU UGC UAG

If sequence is incorrect in (b)(i), award mark if section is from exons. Ignore gaps.

[5]

2

2